
International Journal of Theoretical Physics, Vol. 38, No. 4, 1999

Causal Statistical Mechanics Calculation of Initial
Cosmic Entropy and Quantum Gravity Prospects
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We report on the consequences of applying the causal laws to the statistical
mechanical calculation of the initial cosmic entropy. It can be deduced that the
entropy density tends to zero as one approaches the initial singularity. This result
along with some quantum gravity considerations lead us to the conclusion that
the initial data of the physical fields are asymptotically homogeneous in that limit.

1. INTRODUCTION

The observation of the cosmic microwave background is probably the

most influential one in cosmology. In particular, the D T/T , 10 2 5 measure-

ments [1] of the large-scale cosmic microwave background anisotropies estab-

lish an impressive isotropic behavior, which in turn gives us information on
the initial cosmic data.

The existence of the cosmic microwave background was predicted before

it first detection from the observation that in the past the universe has been

always expanding. But when one puts this picture in the framework of general

relativity, another striking prediction arises, namely the existence of an initial
cosmic singularity. Through the singularity theorems [2] one can prove that

under very general circumstances, the initial singularity is unavoidable.

There are many fundamental consequences associated with the existence

of the initial cosmic singularity, in particular those related to the causality

principle.

Many of the calculations done in cosmology are carried out using the so-
called standard cosmological model, in which it is assumed that the Universe is
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isotropic and homogeneous. At very early cosmic times there is an era

dominated by radiation and its geometry is given by the corresponding Fried-

mann line element, which is a special case of the Robertson±Walker metrics.
One of the consequences of the existence of the cosmic singularity and the

validity of the causality principle in the context of the standard cosmological

model is that, let us say, opposite directions in the sky receive information

on the cosmic microwave background radiation coming from regions that

were causally disconnected at the time of emission. This is due to the fact

that any region of the spacetime can only receive signals from other regions
in its causal past, which because of the initial cosmic singularity is limited

by the so-called particle horizons [3].

Then it is deduced that the observed homogeneity of the universe at

very early epochs cannot be explained in terms of the thermodynamic equilib-

rium of regions that were causally disconnected.

In this article we study the implications that arise in the calculation of
entropy from statistical mechanics in a universe that has been expanding,

but when no isotropy or homogeneity is assumed. Even when one relaxes

the hypothesis of isotropy and homogeneity, the singularity theorems predict

in an ever-expanding universe the existence of a past singularity, so our next

calculations will take this into account.
In order to give some perspective to the calculations, in the next section

we review the thermodynamic derivation of the entropy of radiation from

the knowledge of the equations of state. In Section 3 the entropy of radiation

is calculated from causal statistical mechanics. Some remarks concerning

quantum gravity considerations are presented in Section 4. Finally, Section

5 is devoted to brief comments.

2. ENTROPY OF RADIATION FROM THERMODYNAMICS

In order to simplify the discussion we will consider the contribution to

the entropy coming from the electromagnetic radiation, which at very early
cosmic times is actually the main contribution [4] to the energy density.

From a thermodynamics point of view, the entropy can be calculated if

one knows the necessary equations of state, which for radiation are

U 5 aVT 4

and

P 5
1

3

U

V
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where U, V, P, and T are the internal energy, volume, pressure, and temperature,

respectively, and a is a constant which is related to the Stefan±Boltzmann

constant s and the velocity of light c by the relation a 5 4 s /c.
One can then prove from thermodynamic arguments [5] that, if these

equations of state hold, the entropy is given by

S 5
4

3
a1/4U 3/4V 1/4 (1)

3. ENTROPY FROM CAUSAL STATISTICAL MECHANICS

The most detailed information that we have on the issue of the cosmic

initial data comes from the observation of the temperature of the cosmic

background radiation; then one can say that in the early universe, matter was

in a state that allowed a local description in terms of thermodynamic quantities.

Accordingly, we will concentrate on the role of the entropy.
Although in the early universe the local physical properties were con-

stantly changing in time, one can think of taking a volume small enough so

that the thermodynamic characteristic times are much smaller than any other

dynamical time associated with the small subsystem. So, given a comoving

observer with the matter flow, with world line g ( t ) and a small volume V0,
there is associated the entropy

S t 5 S t (U, V0, NX)

at proper time t , where NX represents all the other possible extensive
quantities.

For the sake of simplicity we will only refer in the next calculation to

the contribution to the entropy coming from radiation.

In statistical mechanics, one bridges the gap between the microscopic

description of matter and its macroscopic thermodynamic description by

the expression

S 5 2 kB tr( r ln r ) 5 2 kB o
i

Pi ln Pi (2)

where the first is the standard quantum mechanical expression, while the

second refers to a particular diagonalizing basis and kB is the Boltzmann

constant.

The distribution probability function Pi must be calculated from the
information on the thermodynamic boundary conditions. Since the chemical

potential of the photon gas is zero, one can equivalently use the canonical

or grand canonical formalism to treat this case. The distribution is then

given by
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Pi 5
1

Z( b , V0)
e 2 b E i(V0)

where

Z( b , V0) [ o
i

e 2 b Ei

from which the entropy becomes

S 5 kB(ln Z 1 b U )

Consistency with thermodynamics requires b 5 1/(kBT ).
In order to calculate the partition function Z we must describe more in

detail what is meant by the index i in the distribution. Let nk, e be the number

of photons with momentum k and polarization e ; then for a particular value

of the energy in the state i we mean

Ei ® E{nk, e } 5 o
k, e

" v (k)nk, e

with v (k) 5 c | k | , and nk, e being nonnegative integers. Then the partition

function is expressed [6] by

Z 5 o
nk, e

exp F 2 b o
k, e

" v (k)nk, e G 5 &
k, e

o
n

e 2 b " v (k)n 5 &
k, e

1

1 2 e 2 b " v (k)

from which we obtain

ln Z 5 2 o
k, e

ln(1 2 e 2 b " v (k))

The internal energy U can be calculated from the expression

U 5 2
- ln Z

- b
5 o

k, e

" v (k)e 2 b " v (k)

(1 2 e 2 b " v (k))

The entropy is then given by

S 5 kB 1 2 o
k, e

ln(1 2 e 2 b " v (k)) 1 b o
k, e

" v (k)

e b " v (k) 2 1 2
As usual it is convenient to proceed with the calculation in the continuum

representation, so that the entropy is expressed in terms of integrals, that is,

S 5 kB 1 # F 2 ln(1 2 e 2 b " v ) 1 b
" v

(e b " v 2 1) G V0

p 2c3 v 2 d v 2 (3)

and introducing the variable of integration w 5 b " v , one obtains
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S 5
V0kB

p 2c3 b 3 " 3 1 # [ 2 ln(1 2 e 2 w)]w2 dw 1 # w3

ew 2 1
dw 2 (4)

Up to now we have just reproduced the calculation of the entropy of

radiation as it appears in textbooks, but we have omitted on purpose the

limits of the integrals; it is exactly here that causality plays a decisive role.

Let us recall that all these calculations are done in a small volume V0

when the observer is at the point g ( t ) of the worldline g . The standard limits
of integration for expression (3) are from 0 to infinity; however, these standard

limits do not take into account the existence of the initial cosmic singularity

and the causality principle.

Due to the fact that there exists a particle horizon, the subsystem under

consideration does not have available an infinite reservoir, but rather, because

of causality, there is available only a finite amount of all the extensive
variables. To fix ideas let us say that at the point g ( t ) the observer detects

in his past for the extensive quantities X a the total amount X a max( t ). Then

for the statistical description of our subsystem, one can think that it belongs

to an ensemble of systems which in turn form a closed system with extensive

quantities X a max( t ). That is, one can think of one of the standard derivations

of the properties of the canonical ensemble in terms of the study of a small
subsystem of a big system with the microcanonical distribution [7].

The real situation then is that our subsystem, with the small volume V0,

does not have at its disposal an infinity of energy states. All this means that

" v cannot run in the process of integration up to infinity, but to a certain

maximum value that we call Umax, and which is identified with the maximum
available total energy to the subsystem, because of the existence of a particle

horizon. Therefore the expression for the entropy is actually

S( t ) 5
V0kB

p 2c3 b ( t )3 " 3 1 #
xmax ( t )

0

[ 2 ln(1 2 e 2 w)]w2 dw 1 #
xmax( t )

0

w3

ew 2 1
dw 2

where xmax( t ) 5 b Umax( t ). By an integration by parts of the first term,

one obtains

S 5
V0kB

p 2c3 b 3 " 3 1 2 ln(1 5 e 2 w)
w3

3 Z
xmax

0

1
4

3 #
xmax

0

w3

ew 2 1
dw 2 (5)

When xmax 5 ` the first term does not contribute to the value of the
entropy, and one reproduces the result of equation (1); however, this is not

the case in our calculation.

We are interested in the regime for t ® 0, which can be arranged to

coincide with the limit when one approaches the initial cosmic singularity
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along the worldline g ( t ). It is clear that as t decreases, so does Umax( t ), and

that in the limit for t ® 0, one has

lim
t ® 0

Umax( t ) 5 0 (6)

since the causal past disappears in this regime. This is not in contradiction

with the fact that the energy density is expected to blow up when t ® 0.

It is also the case that if an observer along the worldline g ( t ) sees an

expanding universe, like the one in which we live, then the temperature must

increase for decreasing values of t , or equivalently b ( t ) must decrease for
descending values of t .

In summary xmax( t ) ® 0 when t ® 0, and we can make an asymptotic

expansion of the entropy for very small values of t . The first-order contribu-

tion of the two leading terms is

S >
V0kB

p 2c3 b 3 " 3 1 2
x3

max

3
ln xmax 1

4

9
x3

max 2 (7)

Recalling the definition of xmax, the last expression reduces to

S( t ) >
V0kB

p 2c3 " 3 1 2
Umax( t )3

3
ln( b ( t )Umax( t )) 1

4

9
Umax( t )3 2 (8)

where now the factor multiplying the parenthesis is a constant independent

of t .

It is observed from equation (8) that although the last term goes to zero

as t ® 0, it is not clear what happens with the first term due to the appearance
of b ( t ) in the logarithm. In order to study the behavior of the first term it is

useful to see how the internal energy behaves in this regime.

The energy is given by

U 5
V0

p 2c3 b 4 " 3 #
xmax

0

w3

ew 2 1
dw (9)

and its leading-order behavior for t ® 0 is given by

U( t ) > V0

p 2c3 b ( t )4 " 3

xmax( t )3

3
5

V0

p 2c3 b ( t ) " 3

Umax( t )3

3
(10)

It is clear that the internal energy U( t ) of our subsystem cannot have

more energy than the total observed energy Umax( t ); therefore one has

V0

p 2c3 b ( t ) " 3

Umax( t )3

3
, Umax( t ) (11)
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in this regime. From this last inequality it is deduced that

ln( b ( t )Umax( t )) . ln 1 V0

p 2c3 " 3

Umax( t )3

3 2 (12)

which implies

lim
t ® 0 1 2

V0

p 2c3 " 3

Umax( t )3

3
ln( b ( t )Umax( t )) 2 5 0 (13)

It is concluded then that the entropy of our subsystem vanishes in this
limit, that is,

lim
t ® 0

S( t ) 5 0 (14)

Although we have considered up to now only the contribution of the

entropy coming from radiation, the calculations can be extended to include

the other types of particles and then we will conclude that the total entropy
Stot( t ) associated with the small volume V0 also goes to zero as t ® 0.

4. QUANTUM GRAVITY PROSPECTS

It has sometimes been stated that probably the smooth spacetime descrip-

tion for physical phenomena might be a successful picture only for relatively

large scales, but it is conceivable that at very small scales one might need

another kind of theory. The natural small-distance scale is given by the Planck

scale, which is defined in terms of the Planck constant, the gravitational
constant, and the velocity of light. It is possible that the yet-to-be-constructed

theory of quantum gravity might show (and might need) a new structure of

the spacetime at such small scales.

It is commonly believed that for low-energy processes and for systems

where the gravitational fields are relatively weak, one need not be troubled

with this possibly discrete nature of physical phenomena. However, it is not
at all clear that one should avoid this issue when one is studying the physics

in the vicinity of the initial cosmic singularity since in this case one has both

high-energy processes and strong gravitational fields; therefore the implica-

tions of a different quantum gravity nature of the spacetime might be

noticeable.

If the fundamental structure of the spacetime is actually of a discrete
kind, then the description of physical fields at very small scales would be in

terms of a finite set of variables for a given finite portion of the spacetime.

In other words, physical fields will be described by a finite set of degrees

of freedom.
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Let us here adopt the attitude that the successful present description of

physical phenomena in terms of a smooth spacetime is actually a sort of

coarse-grained view of an underlying discrete structure, and therefore associ-
ated with any finite portion of the smooth (coarse-grained view of the)

spacetime there is actually only a finite set of degrees of freedom. Further-

more, let us assume that each of these degrees of freedom is describable in

terms of a finite set of integers. It is appropriate to emphasize that this point

of view is in complete agreement with observations since in particular any

physical measurement has as an output a finite set of numbers along with
their respective experimental errors; in other words, it is a fact of nature that

we cannot measure an infinity of degrees of freedom in any observation.

However, the description of the physical systems fundamentally changes if

one adopts this viewpoint.

The singularity theorems in an expanding universe predict the existence

of incomplete past-directed timelike geodesics. How is one supposed to
understand the prediction of the existence of the initial singularity, based on

a smooth description of the spacetime, when a fine-grained discrete structure

is assumed? There are clearly two possibilities; either the extensions of the

past-directed timelike geodesics of the fine-grained view of the spacetime

are still incomplete or not. In other words, either there remains an initial
time even in the discrete description of the spacetime or the discrete manifold

extends indefinitely to its past. The physics community seems to be divided

in this respect; some researchers expect that a complete theory of quantum

gravity will wash out an unpleasant cosmic singularity, while others, who

are not so disturbed with an initial singularity, anticipate that some kind of

singularity will remain even in a discrete description of the spacetime. We
adopt here the second attitude; that is, that there will be a beginning of time

even if one has a complete fine-grained description of the spacetime.

Given a region U of the spacetime, then the characterization of the

physical fields will be given by a finite set of integers. To this set one can

associate a measure. Let I(U ) be a measure of the information needed to

describe the physical fields in the open 4-dimensional region U.
We only require the measure of information to have the following two

elementary properties:

(A) Nonnegativity: the measure of information I(S) of a system S is

nonnegative,

I(S) $ 0

(B) Subadditivity: the measure of information I(U ) of a system U, which

is the disjoint union of two sets, that is, U 5 S1 ø S2, is bounded by the
sum of the information I(S1) and I(S2), that is,

I(U ) # I(S1) 1 I(S2)
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Given this measure and any point x of the spacetime, one can define

the notion of information 4-density scalar, with respect to the 4-volume

element e , from the relation

I(4)(x) 5 lim
U ® f ;VU ® 0

I(U )

VU

with VU [ * U e being the volumes of the sequence of 4-dimensional open
neighborhoods U which contain the point x. The regions U are thought of

in the form I 2 (xF) ù I+(xP), that is, the intersection of the chronological past

of xF with the chronological future of xP , where xF P I+ (x) and xp P I 2 (x);

and so the limit is obtained when both xF and xP approach x. It is deduced

from property (B) that I(4)(x) is bounded; that is, the information 4-density

scalar cannot be given in terms of distributions.
When one applies the causal law to the physical fields evaluated in the

region U, one concludes that the information available at U can only depend

on the information contained in its causal past.

Let x t be the point g ( t ) in the timelike curve g , and let U t be an open

neighborhood of x t . Then, if J 2 (U t ) denotes the causal past of U t , it is deduced

from the causal law that

I(U t ) # I(J 2 (U t ) 2 U t ) # # J 2 (U t ) 2 U t

I4 e

where, while the first inequality is explained by causality, the second is

deduced from the properties (A) and (B) of the measure.

Let the curve g ( t ) be a geodesic of maximal length from the point x
reaching the initial singularity at t 5 0. Then when we take the limit for

the point x t to approach the initial singularity, we observe that the region

J 2 (U t ) 2 U t gets smaller and smaller, from which we deduce that actually

lim
t ® 0

I(U t ) 5 0

since no causal past is left in this limit.

5. FINAL COMMENTS

The behavior of entropy as one approaches the initial singularity has

been the subject of discussion from different perspectives. In general one
finds efforts to explain a desired low-entropy behavior [8, 9]. The results of

Section 3 show that the explanation of the low-entropy behavior comes just

from the calculation in the framework of causal statistical thermodynamics.

Our results should be contrasted with the standard treatment of entropy in
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the Friedmann cosmological model, where, if we call Sstd
t the result of the

standard calculation, one has that Sstd
t of a comoving volume is constant, and

therefore Sstd
t (V0) diverges in the limit t ® 0 for a small constant proper

volume V0, as is calculated for a comoving cosmic observer.

Recalling from equation (2) that S 5 2 kB ( i Pi ln Pi, we conclude that

in the asymptotic regime for t going to zero, the physical fields will only

have available a single limiting state.

The same situation is encountered from the calculations of the last

section. Therefore, both results independently imply that a physical field in

the limit along the curve g p( t ) for t ® 0 will only have available a single

limiting state. But the same applies to any other curve g q( t ). One concludes

then that if p and q are two distinct boundary spacetime points at the singular-

ity, an observer at x sees the same behavior along the direction toward p and

the direction toward q. Then as x approaches the initial singularity along the

timelike curve g ( t ), one observes an asymptotic isotropic universe.

Since this is a property ascribed to any worldline g ( t ) which reaches

the initial cosmic singularity at different spacetime boundary points, it is

concluded that the limiting available data for the spacelike initial cosmic

singularity must be homogeneous.

In conclusion, the observed initial isotropic and homogeneous behavior

of the universe is not in contradiction with the existence of the initial singular-

ity; on the contrary, it is a consequence of causality and the existence of the

initial cosmic singularity.

Due to limitations of space we have left some technical points aside. A

detailed study of the calculations and implications of the results reported in

the previous sections will be done in a separate work.
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